炼油技术与工程 ›› 2024, Vol. 54 ›› Issue (5): 41-44.

• 机械设备 • 上一篇    下一篇

深度学习在易结焦加热炉温度场软测量应用总结

高丽岩   

  1. 中石化(天津)石油化工有限公司装备研究院
  • 收稿日期:2024-01-19 出版日期:2024-05-15 发布日期:2024-05-21
  • 作者简介:高丽岩,高级工程师,硕士,1995年毕业于东北大学流体传动及控制专业,现主要从事石化特种设备管理、检验检测、科研开发工作。联系电话:13821571115,E-mail:gaoliyan.tjsh@sinopec.com。

Application of deep learning in soft measurement of temperature field in industrial reheating furnace

Gao Liyan   

  1. Equipment Research Institute of SINOPEC Tianjin Company
  • Received:2024-01-19 Online:2024-05-15 Published:2024-05-21

摘要:

易结焦加热炉燃烧过程不稳定,会引起炉管局部超温,导致加热炉的损耗和破坏,因此实际工程中需要对加热炉各处的温度进行测量。文中提出一种基于红外图像与计算流体力学(CFD)的加热炉炉管温度场软测量方法,利用不同工况数据构建实验数据集,建立深度学习训练温度场实时预测模型,实现输入工况后模型即可输出对应温度场,实现工业加热炉温度场的软测量。本研究通过CFD仿真计算得出的温度场与炉管壁热电偶实测值误差均在5%以内,因此可以认为CFD仿真得到的加热炉三维温度场能够很好地代表炉膛内的真实温度场。

关键词: 深度学习, 工业加热炉, 温度场, 软测量, CFD仿真, 红外图像, 模型预测, 网络训练

Abstract:

For easy coking furnace, due to the unstable combustion process, it will cause local overheating of the furnace tube, resulting in loss and damage of the furnace, so it is necessary to measure the temperature at various locations of the heating furnace. In this paper, a soft measurement method of temperature field of furnace tube in heating furnace is proposed based on infrared images and computational fluid dynamics. By selecting data from different operating conditions to construct an experimental dataset, a real-time prediction model of temperature field is trained by deep learning to realize the purpose that the model can output the corresponding temperature field when input working conditions, and the soft measurement of temperature field of industrial heating furnace is realized. The temperature field calculated through CFD simulation in this study has an error of less than 5% compared to the temperature values on the thermocouple on the furnace wall. Therefore, it can be considered that the three-dimensional temperature field of the heating furnace obtained from CFD simulation can well represent the real temperature field inside the furnace.

Key words: deep learning, industrial heating furnace, temperature field, soft measurement, CFD simulation, infrared images, model prediction, network training,