Petroleum Refinery Engineering ›› 2023, Vol. 53 ›› Issue (4): 1-4.
• PROCESSING • Next Articles
Sui Xiupeng1, Wang Chunming2, Liu Changcheng2, Zhong Jianming1, Ma Aizeng2, Wang Jieguang2
Received:
Online:
Published:
隋秀鹏1, 王春明2, 刘昌呈2, 钟建明1, 马爱增2, 王杰广2
作者简介:
Abstract:
The technical path for reducing energy consumption of propane dehydrogenation process is discussed from four aspects: technological progress of direct dehydrogenation catalyst, technological optimization and innovation, oxidative dehydrogenation technology and low energy consumption propane propylene separation technology. The technical progress of direct dehydrogenation catalyst can improve the performance and life of the catalyst, thus improving the efficiency of the process and achieving the goal of reducing energy consumption. Adopting more suitable process conditions and types can effectively improve the energy efficiency of the process and reduce the energy consumption of feedstock heating and product separation. Although oxidative dehydrogenation can overcome the thermal-dynamic limits of direct dehydrogenation and avoid energy consumption causing by high reaction temperature, it still confronts the problems of low reaction selectivity and hard control of reaction depth. The process of propane-propylene separation has high energy consumption. The development of adsorption separation and membrane separation technology might bring a high efficient separation process with low energy consumption.
Key words: propane dehydrogenation, energy consumption, direct dehydrogenation, oxidative dehydrogenation, propane-propylene separation, metal-organic frameworks;
摘要:
从丙烷直接脱氢催化剂技术进步、工艺技术优化创新、氧化脱氢技术以及低能耗丙烷/丙烯分离技术4个方面探讨了丙烷脱氢工艺降低能耗的技术路径。丙烷直接脱氢催化剂的技术进步可以提高催化剂性能和寿命,从而提高工艺过程效率,实现降低能耗的目标。采用更加适宜的工艺条件和工艺类型,可以有效提高工艺过程的能效,降低原料加热和产物分离能耗。氧化脱氢可以有效克服直接脱氢热力学限制,避免高温过程产生较高的能耗,但面临着反应选择性差、反应过程不易控制的难题。丙烷/丙烯的分离过程能耗高,吸附分离和膜分离技术的开发有望实现低能耗的丙烷/丙烯高效分离。
关键词: 丙烷脱氢, 能耗, 直接脱氢, 氧化脱氢, 丙烷/丙烯分离, 金属-有机框架材料
Sui Xiupeng, Wang Chunming, Liu Changcheng, Zhong Jianming, Ma Aizeng, Wang Jieguang . Discussion about technical paths of reducing energy consumption in propane dehydrogenation process[J]. Petroleum Refinery Engineering, 2023, 53(4): 1-4.
隋秀鹏, 王春明, 刘昌呈, 钟建明, 马爱增, 王杰广 . 丙烷脱氢工艺降低能耗的技术路径探讨[J]. 炼油技术与工程, 2023, 53(4): 1-4.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal01.magtechjournal.com/lyjsygc/EN/
https://journal01.magtechjournal.com/lyjsygc/EN/Y2023/V53/I4/1
[1] 刘昌呈,王春明,马爱增.工艺条件对Pt-Sn-K/Al2O3催化剂丙烷脱氢性能的影响[J].石油炼制与化工,2013,44(4):34-38.
[2] AMEDI H R,AGHAJANI M.Economic estimation of various membranes and distillation for propylene and propane separation [J].Industrial & engineering chemistry research,2018,57(12):4366-4376.
[3] 林秀岩,王学磊.丙烷脱氢装置能耗计算及节能措施[J].天津化工,2020,34(2):40-41.
[4] 张雨宸,张耀远,吴芹,等.丙烷脱氢用高稳定性Pt基催化剂研究进展[J].化工进展,2022,41(9):4733-4753.
[5] HU Z P,YANG D D,WANG Z,et al.State-of-the-art catalysts for direct dehydrogenation of propane to propylene[J].Chinese journal of catalysis,2019,40(9):1233-1254.
[6] 吴建国,吴登峰,程道建.丙烷脱氢制丙烯用单原子催化剂研究进展[J].化工进展,2021,40(12):6688-6695.
[7] 晁念杰,李博,李长明,等.丙烷催化脱氢制丙烯工艺及催化剂的研究进展[J].当代化工,2019,48(8):1806-1810.
[8] 侯雨璇,王红秋,鲜楠莹.世界丙烯生产技术进展与经济性分析[J].现代化工,2020,40(10):60-65.
[9] Pramote Chaiyavech.Commercialization of the world’s first oleflex unit [J].The Journal of the royal institute of Thailand,2002,27(3):664-672.
[10] 曹湘洪.增产丙烯,提高炼化企业盈利能力[J].化工进展,2003,22(9):911-919.
[11] 马爱增,王杰广,王春明,等.轻烃及石脑油综合利用技术开发及工业应用[J].石油炼制与化工,2021,52(10):144-149.
[12] 黄格省,丁文娟,王红秋,等.丙烷脱氢制丙烯发展现状与前景分析[J].油气与新能源,2022,34(2):8-14.
[13] DIGIULIO C,SADLER C C.Dehydrogenation process at reduced hydrogen to hydrocarbon ratios:US10843984(B2) [P].2020-11-24.
[14] SERBAN M,VETTER M J,NEDOHIN G J,et al.Dehydrogenation process:US10647637 (B2) [P].2020-05-12.
[15] 张国甫.新型发热材料在丙烷脱氢反应器中应用效果分析[J].浙江化工,2016,47(10):40-44.
[16] 卢存亮,王磊,宫静.新型丙烷脱氢技术的应用研究[J].炼油与化工,2022,33(1):23-25.
[17] GRANT J T,CARRERO C A,GOELTL F,et al.Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts [J].Science,2016,354(6319):1570-1573.
[18] LU W D,WANG D Q,ZHAO Z C,et al.Supported boron oxide catalysts for selective and low-temperature oxidative dehydrogenation of propane [J].ACS catalysis,2019,9(9):8263-8270.
[19] ZHOU H,YI X F,HUI Y,et al.Isolated boron in zeolite for oxidative dehydrogenation of propane[J].Science,2021,372(6537):76-80.
[20] CHEN S,ZENG L,MU R T,et al.Modulating lattice oxygen in dual-functional Mo-V-O mixed oxides for chemical looping oxidative dehydrogenation[J].Journal of the American chemical society,2019,141(47):18653-18657.
[21] XING F L,NAKAYA Y,YASUMURA S,et al.Ternary platinum-cobalt-indium nanoalloy on ceria as a highly efficient catalyst for the oxidative dehydrogenation of propane using CO2[J].Nature catalysis,2022,5(1):55-65.
[22] AMEDI H R,AGHAJANI M.Economic estimation of various membranes and distillation for propylene and propane separation [J].Industrial & engineering chemistry research,2018,57(12):4366-4376.
[23] CADIAU A,ADIL K,BHATT P M,et al.A metal-organic framework-based splitter for separating propylene from propane [J].Science,2016,353(6295):137-140.
[24] ZENG H,XIE M,WANG T,et al.Orthogonal-array dynamic molecular sieving of propylene/propane mixtures [J].Nature,2021,595(7868):542-548.
[25] LIANG B,ZHANG X,XIE Y,et al.An ultramicroporous metal-organic framework for high sieving separation of propylene from propane [J].Journal of the American chemical society,2020,142(41):17795-17801.
[26] 潘宜昌,邢卫红.丙烯/丙烷分离的ZIF-8膜研究进展[J].化工进展,2020,39(6):2036-2048.