Petroleum Refinery Engineering ›› 2023, Vol. 53 ›› Issue (9): 42-45.
• CATALYST AND ASSISTANT • Previous Articles Next Articles
Chen Guang, Xu Dahai, Ding He, Fan Siqiang
Received:
Online:
Published:
陈光, 徐大海, 丁贺, 范思强
作者简介:
基金资助:
Abstract:
At present, in order to realize long-term stable operation of coking naphtha hydrogenation unit, two major problems need to be solved: high diolefin content in coking naphtha is easy to condense and coke at relatively high reaction temperatures, which leads to the rise of reactor pressure drop; silicon-containing additives used in the pre-processing stage can cause silicon dioxide deposition on the surface of the catalyst, resulting in fast deactivation and short operation cycle of catalyst. These strategies are proposed include the addition of low-temperature de-diolefin protection reactors to the process, the development of hydro-desilicification guard catalyst with strong silicon capacity and high activity hydrofining catalyst. The industrial application results show that the operation cycle of the coking naphtha hydrogenation unit is greatly extended, which provides technical support for the long cycle operation of the unit.
Key words: coking naphtha, hydrogenation unit, hydro-desilicification guard catalyst, low-temperature protection reactors, high activity hydrofining catalyst, deposition amount of silicon impurities
摘要:
目前焦化石脑油加氢装置要实现长周期稳定运行,需要重点解决两大问题:焦化石脑油的二烯烃含量高,在较高的反应温度下易缩合生焦,导致反应器压力降上升;前序加工阶段使用的含硅添加剂会造成二氧化硅在催化剂表面沉积,导致催化剂失活快、运行周期短。针对上述问题提出了解决方案:对焦化石脑油加氢工艺流程进行了改进,增设了低温脱二烯烃保护反应器;配套开发了容硅能力强的加氢捕硅剂及高活性加氢精制催化剂。应用结果表明:焦化石脑油加氢装置的运行周期大幅延长,为装置的长周期运行提供了技术保障。
关键词: 焦化石脑油, 加氢装置, 加氢捕硅剂, 低温保护反应器, 高活性加氢精制催化剂, 硅杂质沉积量
Chen Guang, Xu Dahai, Ding He, Fan Siqiang . Research on catalyst strategy for long cycle operation of coking naphtha hydrotreating unit[J]. Petroleum Refinery Engineering, 2023, 53(9): 42-45.
陈光, 徐大海, 丁贺, 范思强 . 应对焦化石脑油加氢装置长周期运行的催化剂策略研究[J]. 炼油技术与工程, 2023, 53(9): 42-45.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal01.magtechjournal.com/lyjsygc/EN/
https://journal01.magtechjournal.com/lyjsygc/EN/Y2023/V53/I9/42
[1] 王祖纲,杨勇,肖家治.重油加工脱碳技术的发展现状与趋势[J].世界石油工业,2021,28(2):53-62.
[2] 魏晓丽,龚剑洪,王迪.焦化汽油催化裂解反应特性探析[J].石油炼制与化工,2018,49(7):1-6.
[3] 杨建军.含硅石脑油对乙烯生产系统影响的研究[J].石化技术,2021,28(8):1-3.
[4] 吴丽威,王长发.焦化石脑油脱硅保护催化剂的研究进展[J].工业催化,2012,20(9):20-23.
[5] 李永林,刘丽,段为宇.FHRS捕硅剂在加氢装置长周期运行中的作用分析[J].炼油技术与工程,2017,47(7):40-42.
[6] 韩志波,马宝利,赵野.焦化石脑油加氢催化剂长周期运行的影响因素分析[J].炼油与化工,2019,30(3):9-11.
[7] 杨成敏,郭蓉.焦化石脑油加氢技术的开发及工业应用[J].当代石油石化,2013,21(6):34-39.
[8] 曲涛,贾宝军,柴海,等.加氢捕硅剂在焦化汽、柴油加氢处理装置上的应用[J].炼油技术与工程,2009,39(10):47-49.
[9] 代萌,丁贺,徐大海,等.焦化石脑油加氢催化剂硅沉积规律及捕硅剂FHRS-2的作用[J].石油炼制与化工,2021,52(2):51-56.
[10] 王哲,张乐,葛泮珠,等.柴油产品质量升级与清洁柴油生产技术应用进展[J].石油炼制与化工,2021,52(12):113-118.