Petroleum Refinery Engineering ›› 2024, Vol. 54 ›› Issue (3): 51-56.
• ENERGY UTILIZATION • Previous Articles Next Articles
Shi Xiaofei
Received:
Online:
Published:
史晓斐
通讯作者:
基金资助:
Abstract:
Multi-energy coupled process linear programming models integrating carbon footprint tracking was established, assessing the overall performance and carbon footprint of multi-energy-coupled refining processes that integrate wind energy, solar energy, biomass, natural gas, and coal-to-hydrogen process. The results indicate that coupling low-carbon energy hydrogen production processes can significantly reduce the carbon footprint of refining products. Among them, the hydrogen production process coupled with solar energy has the best emission reduction effect, with the gasoline carbon footprint(calculated by CO2) reduced to 377.07 kg/t, a reduction of about 30% compared to traditional processes. However, due to the high cost of obtaining low-carbon hydrogen, the overall profits of the three schemes with multi-energy coupled low-carbon hydrogen sources are 9% to 22% lower than traditional energy hydrogen production processes. With the introduction of carbon taxes, the low-carbon advantages of renewable energy gradually become evident. As the costs of wind power generation and photovoltaic power generation technologies decrease, multi-energy-coupled processes will demonstrate competitiveness in terms of economic and environmental performance.
Key words: multi-energy coupling, carbon emission reduction, carbon footprint, solar energy, wind energy, resource utilization, economy
摘要:
建立了集成碳足迹追踪的多能耦合过程线性规划模型,评估了集成风能、太阳能、生物质能、天然气和煤制氢的多能耦合炼油过程的全厂效益与碳足迹。结果表明,耦合低碳能源制氢过程可以显著降低炼油产品碳足迹。耦合太阳能的制氢过程减排效果最好,其汽油碳足迹低至377.07 kg/t(以CO2计),相较传统过程降低了约30%。由于获取低碳氢气的成本高,3个多能耦合低碳氢源的方案全厂利润低于传统能源制氢过程9%~22%。引入碳税后,可再生能源的低碳优势逐步显现,随着风力发电和光伏发电技术成本的降低,多能耦合过程将在经济性能与环境性能方面显现竞争力。
关键词: 多能耦合, 碳减排, 碳足迹, 太阳能, 风能, 资源利用, 经济性
Shi Xiaofei . Economic and carbon footprint analysis of multi-energy coupled low-carbon refining processes[J]. Petroleum Refinery Engineering, 2024, 54(3): 51-56.
史晓斐 . 多能耦合低碳炼油过程经济性与碳足迹分析[J]. 炼油技术与工程, 2024, 54(3): 51-56.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal01.magtechjournal.com/lyjsygc/EN/
https://journal01.magtechjournal.com/lyjsygc/EN/Y2024/V54/I3/51
[1] 李新春,孙永斌.二氧化碳捕集现状和展望[J].能源技术经济,2010,22(4):21-26.
[2] 曹湘洪.炼油行业碳达峰碳中和的技术路径[J].炼油技术与工程,2022,52(1):1-10.
[3] 庄肃青,赵建炜,王金兰,等 .炼化企业“油产化”加工流程与低碳排放研究[J].炼油技术与工程,2023,53(5):5-11.
[4] 胡伟,史瑞静,谢晓光,等.新疆哈密地区风光互补、氢储能耦合煤化工多能系统研究[J].应用能源技术,2017(3):11-14.
[5] 李灿.“一箭三雕”探索阳光甲醇可行路径[J].中国石油企业,2023(3):13-16.
[6] 舟丹.新疆库车绿氢示范项目[J].中外能源,2023,28(7):20.
[7] 田涛,任秀芳,王连超,等.常减压装置全产品碳足迹评价研究与应用[J].石油学报(石油加工),2023,39(2):279-288.
[8] 田涛,曹东学,黄顺贤,等.石化行业不同制氢过程碳足迹核算[J].油气与新能源,2021,33(5):39-45.
[9] 王子健,李佳涵,车景华,等.石化行业碳足迹计算方法及优化分析[J].石油石化绿色低碳,2022,7(2):22-28.
[10] 曹汉昌,谢克文.线性规划及其在炼油工业中的应用[J].炼油设计,1981(6):7-18.
[11] 王鹏 .炼化企业生产计划优化模型测算应用研究[J].炼油技术与工程,2023,53(7):44-48.
[12] 余镜湖.“双碳”目标下传统炼厂氢气的优化思考与建议[J].石油石化绿色低碳,2022,7(2):29-33.
[13] ACAR C,DINCER I.Review and evaluation of hydrogen production options for better environment[J].Journal of cleaner production,2019(218):835-849.
[14] PARKINSON B,BALCOMBE P,SPEIRS J F,et al.Levelized cost of CO2 mitigation from hydrogen production routes[J].Energy and environmental science,2019,12(1):19-40.
[15] JIANG Y,ZAIMES G G Z,LI S Y,et al.Economic and environmental analysis to evaluate the potential value of co-optima diesel bioblendstocks to petroleum refiners[J].Fuel,2023,333:126233.
[16] 范思强,曹正凯,羡策,等.常一线馏分生产化工原料加氢裂化工艺研究[J].石油化工,2023,52(9):1192-1196.