Petroleum Refinery Engineering ›› 2024, Vol. 54 ›› Issue (4): 6-10.
• PROCESSING • Previous Articles Next Articles
Lv Changjian, Wang Juan
Received:
Online:
Published:
吕长剑, 王娟
作者简介:
Abstract:
CCUS(carbon capture, utilization and storage) has been one of the primary measures worldwide to reduce carbon dioxide emissions, achieving sustainable development. However, the captured carbon dioxide(CO2) at present is lacking commercial value, making the popularization of CCUS face many challenges. Power-to-gas technology utilizes CO2 methanation reaction, using H2 produced by captured CO2 and green hydrogen technology to produce CH4, which can reduce CO2 emissions. It has the characteristics of low large-scale storage and transportation cost and long energy storage cycle. Compared with other CO2 utilization technologies, it has obvious advantages and is expected to become an important technology for solving carbon emissions and renewable energy curtailment in China. At present, China lacks sufficient attention to methanation reaction and lacks relevant research and demonstration projects. The article analyzes the current research status and progress of methanation reaction internationally, including reaction thermodynamics, catalyst research, and demonstration projects of power-to-gas, in order to inspire the application of power-to-gas technology in China.
Key words: carbon dioxide, methanation, power-to-gas, CCUS, energy storage, hydrogen feedstock, electrolytic water
摘要:
碳捕捉技术已经成为减少温室气体排放、实现可持续发展的主要措施,但捕捉的CO2缺乏商业价值,使碳捕捉技术的普及面临许多挑战。电转气技术利用CO2甲烷化反应,使用捕捉的CO2和绿氢技术生产的H2制备CH4,可以减少CO2排放,具有大规模储运成本低、储能周期长的特点,相比于其他CO2利用技术优势明显,有望成为我国解决碳排放和可再生能源弃电的重要技术。目前,我国缺少对甲烷化反应的相关研究和示范项目。文中分析了国际上甲烷化反应的研究现状和进展,包括反应热力学、催化剂研究、电转气示范项目等,以期对我国电转气技术的应用进行启发。
关键词: 二氧化碳, 甲烷化, 电转气, 碳捕捉, 储能, 氢原料, 电解水,
Lv Changjian, Wang Juan . Research progress and application analysis of CO2 methanation technology[J]. Petroleum Refinery Engineering, 2024, 54(4): 6-10.
吕长剑, 王娟 . 二氧化碳甲烷化技术进展与应用分析[J]. 炼油技术与工程, 2024, 54(4): 6-10.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal01.magtechjournal.com/lyjsygc/EN/
https://journal01.magtechjournal.com/lyjsygc/EN/Y2024/V54/I4/6
[1] BUCKSTEEG M,MIKURDA J,WEBER C.Market integration of power-to-gas during the energy transition—assessing the role of carbon pricing[J].EconStor preprints,2021,124:1.
[2] VANNICE M A.The catalytic synthesis of hydrocarbons from carbon monoxide and hydrogen[J].Catalysis reviews,1976,14(1):153.
[3] SPENNATI E,RIANI P,GARBARINO G.A perspective of lanthanide promoted Ni-catalysts for CO2 hydrogenation to methane:catalytic activity and open challenges[J].Catalysis today,2023,418:1.
[4] KARELOVIC A,RUIZ P.Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts[J].Journal of catalysis,2013,301(5):141.
[5] LI W H,LIU Y,Mu M C,et al.Organic acid-assisted preparation of highly dispersed Co/ZrO2 catalysts with superior activity for CO2 methanation[J].Applied catalysis B:environmental,2019,254:531.
[6] VRIJBURG W L,HELDEN J W A V,PARASTAEV A,et al.Ceria-zirconia encapsulated Ni nanoparticles for CO2 methanation[J].Catalysis science & technology,2019,9:5001.
[7] 张立娟.镍基催化剂二氧化碳甲烷化反应性能研究[D].天津:天津大学,2018:4.
[8] SIDIK S M,TRIWAHYONO S,JALIL A,et al.CO2 reforming of CH4 over Ni-Co/MSN for syngas production:role of Co as a binder and optimization using RSM[J].Chemical engineering journal,2016,295:1.
[9] PAVIOTTI M A,FAROLDI B M,CORNAGLIA L M.Ni-based catalyst over rice husk-derived silica for the CO2 methanation reaction:effect of Ru addition[J].Journal of environmental chemical engineering,2021,9(3):1.
[10] 宋鹏飞,侯建国,姚辉超,等.电制气技术为电网提供大规模储能的构想[J].现代化工,2016,36(11):1.
[11] CHEHADE Z,MANSILLA C,LUCCHESE P,et al.Review and analysis of demonstration projects on power-to-X pathways in the world[J].International journal of hydrogen energy,2019,44(51):27637.
[12] WULF C,ZAPP P,SCHREIBER A.Review of power-to-X demonstration projects in Europe[J].Frontiers in energy research,2020,8(191):367.