Petroleum Refinery Engineering ›› 2024, Vol. 54 ›› Issue (8): 51-55.
• COMPUTER APPLICATION • Previous Articles Next Articles
Sun Xueting, Fu Yujiang, Lin Tangmao, Wang Han, Chen Bo
Received:
Online:
Published:
孙雪婷,傅钰江,林堂茂,王涵,陈博
作者简介:
基金资助:
Abstract: A fire identification algorithm based on the YOLOv5 algorithm is proposed to address the complex interference factors at fire scenes and the relative lag of traditional fire alarm methods. Firstly, the activation function is improved to enhance the model's nonlinear expression and generalization ability, and the loss function is improved to reduce the learning of unnecessary features by the model. Then, the attention mechanism (CBAM) is introduced to enhance the model's bidirectional perception in both channels and space. Finally, a comparative experiment between the improved YOLOv5 algorithm and other recognition algorithms is designed. Qualitative and quantitative analysis proves the effectiveness of the improved algorithm. Compared with the original YOLOv5 algorithm, the model's average precision (AP) has been improved by 5.85%, and the overall network performance has been significantly improved, meeting the requirements for accuracy and real-time detection of fire images. The test results prove its good performance and application value.
Key words: font-family:-apple-system, blinkmacsystemfont, ", font-size:14px, background-color:#FFFFFF, ">computer vision, petrochemical enterprise, fire intelligent monitoring, network structure, activation function, loss function, evaluation index, ablation experiment
摘要: 针对火灾现场干扰因素复杂、传统火灾报警方式相对滞后的问题,提出了一种基于YOLOv5改进的火灾识别算法。首先,通过改进激活函数提升模型非线性表达及泛化能力,改进损失函数,减少模型对非必要特征的学习;然后,通过引入注意力机制CBAM,增强模型在通道和空间的双向感知力;最后,设计改进YOLOv5算法与其他识别算法对比实验。通过定性及定量分析证明改进算法的有效性,与原YOLOv5算法相比,模型平均精度AP提高了5.85%,整体网络性能有了较明显的提升,满足了火灾图像检测准确度、实时性的需求,测试结果证明其具有良好的性能以及应用价值。
关键词: font-family:-apple-system, blinkmacsystemfont, ", font-size:14px, background-color:#FFFFFF, ">计算机视觉, 石化企业, 火灾智能监测, 网络结构, 激活函数, 损失函数, 评价指标, 消融实验
Sun Xueting, Fu Yujiang, Lin Tangmao, Wang Han, Chen Bo. Research on intelligent monitoring of petrochemical fire based on computer vision[J]. Petroleum Refinery Engineering, 2024, 54(8): 51-55.
孙雪婷, 傅钰江, 林堂茂, 王涵, 陈博. 基于计算机视觉的石化火灾智能监测研究[J]. 炼油技术与工程, 2024, 54(8): 51-55.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal01.magtechjournal.com/lyjsygc/EN/
https://journal01.magtechjournal.com/lyjsygc/EN/Y2024/V54/I8/51
[1] 邱天衡,王玲,王鹏,等. 基于改进YOLOv5的目标检测算法研究[J]. 计算机工程与应用,2022, 58(13): 2202-2229.
[2] 张焕,张庆,于纪言. 卷积神经网络中激活函数的性质分析与改进[J]. 计算机仿真,2022(4): 39.
[3] 孙玉莹,王德辉. 不同损失函数下偏正态分布的Bayes估计[J]. 吉林大学学报:理学版,2012, 50(4): 638-646.
[4] 吴新辉,毛政元,翁谦,等. 利用基于残差多注意力和ACoN激活函数的神经网络提取建筑物[J]. 地球信息科学学报,2022, 24(4): 10.
[5] 何津民,张丽珍. 基于自注意力机制和CNN-LSTM深度学习的对虾投饵量预测模型[J]. 大连海洋大学学报,2022, 37(2): 304-311.