[1] ROY P O,HUIJBREGTS M,DESCHNES L,et al.Spatially-differentiated atmospheric source-receptor relationships for nitrogen oxides,sulfur oxides and ammonia emissions at the global scale for life cycle impact assessment[J].Atmospheric environment,2012,62:74-81.
[2] 徐涛,汪根宝,范艺.制氢转化炉低温SCR脱硝技术的应用[J].炼油技术与工程,2021,51 (9) :28-31.
[3] CHEN Z C,LI Z Q,ZHU Q Y,et al.Gas/particle flow and combustion characteristics and NOx emissions of a new swirl coal burner [J].Energy,2011,36(2):709-723.
[4] YANG S J,LI J H,WANG C Z,et al.Fe-Ti spinel for the selective catalytic reduction of NO with NH3:mechanism and structure-activity relationship[J].Applied catalysis B:environmental,2012,117/118:73-80.
[5] KOC A B,ABDULLAH M.Performance and NOx emissions of a diesel engine fueled with biodiesel-diesel-water nanoemulsions [J].Fuel processing technology,2013,109:70-77.
[6] 朴佳锐,王骞,刘其武,等.催化法降低氮氧化物排放量的研究进展[J].石化技术与应用,2013,31(1):74-77.
[7] 杨宏军,朱礼想,李胜利,等.火电厂降低NOx排放的技术研究[J].电力科技与环保,2011,27(6):10-13.
[8] ZHAO P T,CHEN H F,GE S F,et al.Effect of the hydrothermal pretreatment for the reduction of NO emission from sewage sludge combustion [J].Applied energy,2013,111:199-205.
[9] LU B H,JIANG Y,CAI L L,et al.Enhanced biological removal of NOx from flue gas in a biofilter by Fe(Ⅱ)Cit/Fe(Ⅱ)EDTA absorption[J].Bioresource technology,2011,102(17):7707-7712.
[10] ZHANG X Y,JIN R F,LIU G F,et al.Removal of nitric oxide from simulated flue gas via denitrification in a hollow-fiber membrane bioreactor [J].Journal of environmental sciences,2013,25(11):2239-2246.
[11] KWON Y K,HAN D H.Microwave Effect in the Simultaneous Removal of NOx and SO2 under electron beam irradiation and kinetic investigation of NOx removal rate [J].Industrial & engineering chemistry research,2010,49(17):8147-8156.
[12] FU S L,SONG Q,TANG J S,et al.Effect of CaO on the selective non-catalytic reduction deNOx process: experimental and kinetic study[J].Chemical engineering journal,2014,249:252-259.
[13] 马涛,王睿.NOx的催化分解研究[J].化学进展,2008, 20(6):798-810.
[14] 冯云桑,刘少光,陈成武,等.低温脱硝催化剂的研究现状[J].环境工程,2013,31(S1):373-377.
[15] 刘华南,何林,江书宇,等.低温选择性催化还原脱硝催化剂的研究现状与发展[J].四川环境,2013,32(3):117-122.
[16] ZHANG Q L,XU H D,QIU C T,et al.Catalytic performance and steady-state kinetics of Cu-ZSM-5 for selective catalytic reduction of NO with NH3[J].Acta physico-chimica sinica,2012,28(5):1230-1236.
[17] BRANDENBERGER S,KRCHER O,CASAPU M,et al.Hydrothermal deactivation of Fe-ZSM-5 catalysts for the selective catalytic reduction of NO with NH3[J].Applied catalysis B:environmental,2011,101(3/4):649-659.
[18] MA L,CHENG Y S,CAVATAIO G,et al.In situ DRIFTS and temperature-programmed technology study on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts [J].Applied catalysis B:environmental,2014,156/157:428-437.
[19] ZHANG T,LIU J,WANG D X,et al.Selective catalytic reduction of NO with NH3 over HZSM-5-supported Fe-Cu nanocomposite catalysis:the Fe-Cu bimetallic effect [J].Applied catalysis B:environmental,2014,148/149:520-531.
[20] PANAHI P N,SALARI D,NIAEI A,et al.NO reduction over nanostructure M-Cu/ZSM-5 (M:Cr,Mn,Co and Fe) bimetallic catalysts and optimization of catalyst preparation by RSM [J].Journal of industrial and engineering chemistry,2013,19(6):1793-1799.
[21] WANG D,ZHANG L,LI J H,et al.NH3-SCR over Cu/SAPO-34-Zeolite acidity and Cu structure changes as a function of Cu loading [J].Catalysis today,2014,231:64-74.
[22] SIERRA-PEREIRA C A,URQUIETA-GONZALEZ E A.Reduction of NO with CO on CuO or Fe2O3 catalysts supported on TiO2 in the presence of O2,SO2 and water steam [J].Fuel,2014,118:137-147.
|