Petroleum Refinery Engineering ›› 2022, Vol. 52 ›› Issue (11): 7-11.
• OVERVIEW • Previous Articles Next Articles
Wang Wei
Received:
Online:
Published:
王伟
作者简介:
Abstract:
Since the beginning of FCC history, high octane gasoline components are the target products. A whole set of basic theories has been developed around it. During the ten years of the 12th Five-Year Plan and 13th Five-Year Plan, domestic gasoline consumption has grown at an annual growth rate of 7% to 8%. By 2019, domestic gasoline consumption has reached 125 million tons. Due to the impact of the rapid development of the new energy vehicle market, the traditional fuel oil refining practitioners face huge pressure of transformation. In this paper, the traditional FCC technology, the early DCC technology and the new deep cracking technology developed in recent years are analyzed from the macro perspective. Combined with anticipation of peak of gasoline consumption and reduction of fuel products and increase of chemicals, the view is put forward that the transition period should be smooth, advance and retreat by easy stages.
Key words: reduction of fuel products and increase of chemicals, hydrogen transfer, thermal cracking, RTC technology, aromatic hydrocarbon, MFP technology
摘要:
流化催化裂化技术自诞生初期,其主要目标产品即为高辛烷值汽油组分,围绕该主旨形成了一整套基础理论。十二五及十三五的十年,国内汽油消费以每年7%~8%的增速发展,至2019年,已达125 Mt。受新能源汽车市场迅猛发展的冲击,传统燃料型炼油企业转型压力巨大。从宏观视角对传统催化裂化技术、早期的催化裂解技术以及近两年新开发的新型催化裂解技术进行了剖析,结合汽油消费达峰和减油增化预期进行展望,提出转型过渡时期宜平滑过渡、可进可退的个人观点。
关键词: 减油增化, 氢转移, 热裂化, RTC技术, 芳烃, MFP技术
Wang Wei . Prospect of DCC technology in transition period[J]. Petroleum Refinery Engineering, 2022, 52(11): 7-11.
王伟. 转型过渡时期催化裂解技术展望[J]. 炼油技术与工程, 2022, 52(11): 7-11.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal01.magtechjournal.com/lyjsygc/EN/
https://journal01.magtechjournal.com/lyjsygc/EN/Y2022/V52/I11/7
[1] 许友好.氢转移反应在烯烃转化中的作用探讨[J].石油炼制与化工,2002,33(1):38-41.
[2] 陈俊武,许友好.催化裂化工艺与工程[M].3版.北京:中国石化出版社,2015:178.
[3] 沈志虹,潘惠芳,徐春生.磷对烃类催化裂化催化剂表面酸性及抗炭性能的影响[J].石油大学学报(自然科学版),1994,18(2):86-89.
[4] 李鹏,曹东学.催化裂化装置三旋、烟机结垢原因分析及对策[J].炼油技术与工程,2005,35(3):13.
[5] 赵长斌,周翔,许昀,等.高丙烯低生焦催化裂解催化剂的工业应用[J].石油炼制与化工,2022,53(3):38-39.
[6] 张策,张执刚,龚剑洪,等.重油高效催化裂解(RTC)技术试验研究[J].石油炼制与化工,2021,52(8):12-16.
[7] 龚剑洪,吴雷,马青青,等.新型高效重油催化裂解(RTC)技术的工业应用[J].石油炼制与化工,2021,52(7):4.
[8] 刘熠斌,赵辉,杨朝合,等.催化裂解条件下丙烯的二次反应[J].中国石油大学学报(自然科学版),2009,33(3):153-157.
[9]LETZSCH W S.Deep catalytic cracking progress:US7479218[P].2009-01-20.