Petroleum Refinery Engineering ›› 2022, Vol. 52 ›› Issue (8): 69-72.
• ENVIRONMENTAL PROTECTION • Previous Articles
Wang Jian
Received:
Online:
Published:
王健
作者简介:
Abstract:
There are some problems in residue FCC flue gas desulfurization and dedusting device of SINOPEC Guangzhou Company, such as difficult to meet the special emission limit of the discharged purified flue gas particulate matters, high pressure drop of the device, and white smoke and dust rain around the chimney. The device is reformed by using the technology of high efficiency low pressure drop desulfurization, dedusting and mist separation of flue gas. The results show that the average mass concentration of particulate matter and SO2 in the purified flue gas discharged from scrubber monitored online by CEMS is only 12.8 and 3.7 mg/m3 respectively, the mass concentration of particulate matter monitored on site by the third-party detection agency is less than 4 mg/m3 and SO2 is not detected, which are better than the requirements of the special emission limit for atmospheric pollutants in the GB 31570—2015 Emission standard of pollutants for petroleum refining industry. After reformation, the scale and length of white smoke decreases, the phenomenon of dust rain disappears, and the pressure drop of the scrubber is 1.1 kPa lower than that of the original scrubber, saving 0.381 million yuan per year.
Key words: high efficiency, low pressure drop, flue gas desulfurization, dedusting, mist separation, white smoke, scrubber, particulate matter
摘要:
中国石油化工股份有限公司广州分公司重油催化裂化烟气脱硫除尘装置存在外排净化烟气颗粒物难以满足特别排放限值、装置压力降高等问题,烟囱口存在白烟和尘雨现象。采用烟气高效低压力降脱硫除尘除雾技术对上述装置进行了改造。结果表明:烟气排放连续监测系统(CEMS)在线监测洗涤塔外排净化烟气的颗粒物平均质量浓度仅为12.8 mg/m3,SO2平均质量浓度仅为3.7 mg/m3,第三方检测机构现场监测的颗粒物质量浓度小于4 mg/m3,SO2未检出,均优于GB 31570—2015《石油炼制工业污染物排放标准》中大气污染物特别排放限值的要求;白烟的规模及长度有所降低,尘雨现象消失;洗涤塔压力降比原塔体降低了1.1 kPa,每年可节约38.1万元。
关键词: 高效, 低压力降, 烟气脱硫, 除尘, 除雾, 白烟, 洗涤塔, 颗粒物
Wang Jian. Industry application of high efficiency low pressure drop flue gas desulfurization, dedusting and mist separation technology[J]. Petroleum Refinery Engineering, 2022, 52(8): 69-72.
王健 . 高效低压力降烟气脱硫除尘除雾技术工业应用[J]. 炼油技术与工程, 2022, 52(8): 69-72.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal01.magtechjournal.com/lyjsygc/EN/
https://journal01.magtechjournal.com/lyjsygc/EN/Y2022/V52/I8/69
[1] 李磊,李欣,刘忠生,等.FCC 再生烟气超低排放技术路线分析[J].炼油技术与工程,2020,50(9):7-12.
[2] 刘忠生,王学海,齐慧敏,等.催化裂化烟气脱硝脱硫除尘新技术[J].石油炼制与化工,2018,49(1):103-108.
[3] 环境保护部.关于执行大气污染物特别排放限值的公告 [EB/OL].(2013-02-27)[2022-03-18].https://www.mee.gov.cn/gkml/hbb/bgg/201303/t20130305_248787.htm.
[4] 高兴,李速延,黄风林.催化裂化装置催化剂跑损分析[J].工业催化,2012,20(4):47-51.
[5] 张军.超低排放的湿法高效协同除尘的机理及模型研究[D].杭州:浙江大学,2018:57-85.
[6] 李磊,李欣,刘忠生,等.流化催化裂化装置湿法脱硫烟气中颗粒物现场监测的问题分析、对策及优化建议[J].化工环保,2021,41(3):362-370.
[7] 程俊峰,刘英华,余志良,等.湿法烟气脱硫对工业粉尘的协同脱除[J].工业安全与环保,2020,46(3):76-80.
[8] 陈俊武,许友好.催化裂化工艺与工程[M].3版.北京:中国石化出版社,2015:1498-1499.
[9] 梁凤印.流化催化裂化[M].北京:中国石化出版社,2006:190.
[10] 程高锋,王伟,曹俊,等.低压力降水封阀的开发和应用[J].石油化工设备技术,2011,32(4):17-19,24.
[11] 周梓杨,潘涛,关永恒.深度除尘除雾系统在重油催化裂化烟气脱硫除尘中的应用[J].石油炼制与化工,2020,51(4):105-110.