Petroleum Refinery Engineering ›› 2023, Vol. 53 ›› Issue (1): 7-.
• PROCESSING • Previous Articles Next Articles
Shao Zhicai, Zhang Zhigang, Dai Lishun, Xu Youhao, Nie Hong
Received:
Online:
Published:
邵志才, 张执刚, 戴立顺, 许友好, 聂红
作者简介:
基金资助:
Abstract:
Using the mixed feedstock of vacuum residue and FGO, a fixed-bed residue hydrotreating test was carried out under the process conditions of liquid hourly space velocity of 0.20 h-1, hydrogen partial pressure at reactor inlet of 16.5 MPa, and hydrogen-to-oil ratio of 700. The main properties of the hydrogenated atmospheric residue met the requirements of highly selective catalytic cracking(HSCC) feedstock. The HSCC test was carried out with the hydrogenated atmospheric residue. Through the combination of residue hydrotreating and HSCC process, the fixed-bed residue hydrotreating could process 100% vacuum residue. Calculated by vacuum residue feedstock, in three experimental schemes, which were maximum FGO, balanced FGO and gasoline, and maximum gasoline, the yield of gasoline and diesel was 67.77%, 66.38% and 61.99% respectively, and the yield of LPG was 15.69%, 16.76% and 19.22% respectively. The purpose of producing maximum light products with vacuum residue could be realized.
Key words: vacuum residue, fixed-bed hydrotreating, HSCC, integrated process, maximum FGO scheme, balanced FGO and gasoline scheme, maximum gasoline scheme
摘要:
利用减压渣油和未转化催化裂化蜡油(FGO)的混合原料,在液时体积空速0.20 h-1、反应器入口氢分压16.5 MPa、氢油比700的工艺条件下,开展了固定床渣油加氢试验。加氢常压渣油主要性质满足缓和催化裂化原料要求,利用加氢常压渣油开展了缓和催化裂化试验。通过渣油加氢与缓和催化裂化工艺组合,使固定床渣油加氢可以加工100%减压渣油。以减压渣油进料计,多产FGO、兼顾FGO和汽油、多产汽油3种方案的汽油+柴油质量收率分别为67.77%,66.38%,61.99%,高附加值的液化石油气质量收率分别为15.69%,16.76%,19.22%,可以实现利用减压渣油最大量生产轻质产品的目的。
关键词: 减压渣油, 固定床加氢, 缓和催化裂化, 组合工艺, 多产FGO方案, 兼顾FGO和汽油方案, 多产汽油方案
Shao Zhicai, Zhang Zhigang, Dai Lishun, Xu Youhao, Nie Hong . Study on integrated process of vacuum residue fixed-bed hydrotreating and highly selective catalytic cracking[J]. Petroleum Refinery Engineering, 2023, 53(1): 7-.
邵志才, 张执刚, 戴立顺, 许友好, 聂红 . 减压渣油固定床加氢与缓和催化裂化组合工艺研究[J]. 炼油技术与工程, 2023, 53(1): 7-.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal01.magtechjournal.com/lyjsygc/EN/
https://journal01.magtechjournal.com/lyjsygc/EN/Y2023/V53/I1/7
[1] 傅向升.石化继续向好有底气[J].中国石油石化,2020(6):32-35.
[2] 罗佐县.我国原油对外依存度下降并非拐点出现[J].中国石化,2022(3):68.
[3] 李大东.加氢处理工艺与工程[M].北京:中国石化出版社,2004:156-157,1138.
[4] 许友好,戴立顺,龙军,等.多产轻质油的FGO选择性加氢工艺与选择性催化裂化工艺集成技术(IHCC)的研究[J].石油炼制与化工,2011,42(3):7-12.
[5] 石亚华,牛传峰,高永灿,等.渣油加氢技术的研究Ⅱ.渣油加氢与催化裂化双向组合技术(RICP)的开发[J].石油炼制与化工,2005,36(11):21-24.
[6] 牛传峰,张瑞弛,戴立顺,等.渣油加氢-催化裂化双向组合技术RICP[J].石油炼制与化工,2002,33(1):27-29.
[7] 胡大为,杨清河,邵志才,等.劣质渣油加氢脱金属催化剂RDM-36的开发[J].石油炼制与化工,2013,44(6):39-43.
[8] 许友好,刘涛,王毅,等.多产轻质油的催化裂化馏分油加氢处理与选择性催化裂化集成工艺(IHCC)的研发和工业试验[J].石油炼制与化工,2016,47(7):1-8.
[9] 施瑢,戴立顺,刘涛,等.MIP催化裂化柴油与渣油联合加氢工艺研究[J].石油炼制与化工,2017,48(2):6-11.
[10] 邵志才,施瑢,刘涛,等.RICP工艺的拓展研究与工业应用[J].石油炼制与化工,2021,52(12):43-48.
[11] 王祖纲,李颖.加氢裂化技术发展现状及展望[J].世界石油工业,2020,27(4):12-21.