Petroleum Refinery Engineering ›› 2023, Vol. 53 ›› Issue (11): 1-5.
• OVERVIEW • Next Articles
Liu Mingrui, Wang Xiaolin, Li Zunzhao, Xue Qian, Sun Jin
Received:
Online:
Published:
刘名瑞, 王晓霖, 李遵照, 薛倩, 孙进
通讯作者:
作者简介:
基金资助:
Abstract:
Hydrogen storage and transportation technology is the key part that affects the large-scale and commercial application of hydrogen energy, and it is also an important factor that influences the future development pattern of the world clean energy industry. Compared with several current hydrogen storage and transportation technologies, solid-state hydrogen storage technology plays an important role in the field of hydrogen storage and transportation with its high quality density and high safety. Starting from the principles of hydrogen storage based on chemical adsorption mechanism, the research progress and status quo of different solid-state hydrogen storage materials are introduced. From the perspective of raw materials, technology maturity, research projects and the number of patents, the development prospect of solid-state hydrogen storage technology in the future is analyzed.
Key words: chemical adsorption, solid-state hydrogen storage, metal hydrides, coordination hydrides, chemical hydrides
摘要:
氢储运技术是影响氢能规模化、商业化应用的关键核心技术,也是影响世界清洁能源产业未来发展格局的重要因素。对比当前几种氢储运技术,固态储氢技术以其高质量密度、高安全性,在氢储运领域占有重要地位。基于化学吸附机制储氢原理,介绍了不同固态储氢材料的研究进展和现状,并从原材料、技术成熟度、研究项目和专利数量等,展望了未来国内固态储氢技术的发展前景。
关键词: 化学吸附, 固态储氢, 金属氢化物, 配位氢化物, 化学氢化物
Liu Mingrui, Wang Xiaolin, Li Zunzhao, Xue Qian, Sun Jin . Research and prospect of solid-state hydrogen storage technology based on chemical adsorption mechanism[J]. Petroleum Refinery Engineering, 2023, 53(11): 1-5.
刘名瑞, 王晓霖, 李遵照, 薛倩, 孙进 . 基于化学吸附机制的固态储氢技术研究与展望 [J]. 炼油技术与工程, 2023, 53(11): 1-5.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal01.magtechjournal.com/lyjsygc/EN/
https://journal01.magtechjournal.com/lyjsygc/EN/Y2023/V53/I11/1
[1] 曹军文,覃祥富,耿嘎,等.氢气储运技术的发展现状与展望[J].石油学报(石油加工),2021,37(6):1461-1478.
[2] FUKAI Y.The metal-hydrogen system:basic bulk properties[M/OL].Berlin,Heidelberg:Springer Berlin Heidelberg,2005[2022-12-14].
[3] 吴铸,黄太仲,黄铁生,等.TiMn2储氢合金中部分Mn被取代后储氢性能的改善[J].稀有金属,2003,27(1):116-118.
[4] REILLY J J,WISWALL R H.Formation and properties of iron titanium hydride[J].Inorganic chemistry,1974,13(1):218-222.
[5] SCHEFER J,FISCHER P,HÄLG W,et al.Structural phase transitions of FeTi-deuterides[J].Materials research bulletin,1979,14(10):1281-1294.
[6] ZHAO-KARGER Z,HU J,ROTH A,et al.Altered thermodynamic and kinetic properties of MgH2 infiltrated in microporous scaffold[J].Chemical communications,2010,46(44):8353-8355.
[7] ZLOTEA C,CHEVALIER-CÉSAR C,LÉONEL E,et al.Synthesis of small metallic Mg-based nanoparticles confined in porous carbon materials for hydrogen sorption[J].Faraday discussions,2011,151:117-131.
[8] LIU Y,ZOU J,ZENG X,et al.Study on hydrogen storage properties of Mg nanoparticles confined in carbon aerogels[J].International journal of hydrogen energy,2013,38(13):5302-5308.
[9] CHAWLA K,YADAV D K,SHARDA P,et al.Hydrogenation properties of MgH2-x% AC(x=0,5,10,15) nanocomposites[J].International journal of hydrogen energy,2020,45(44):23971-23976.
[10] LIU M,XIAO X,ZHAO S,et al.ZIF-67 derived Co@CNTs nanoparticles:Remarkably improved hydrogen storage properties of MgH2 and synergetic catalysis mechanism[J].International journal of hydrogen energy,2019,44(2):1059-1069.
[11] BOGDANOVIC B,SCHWICKARDI M.Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials[J].Journal of alloys and compounds,1997,253-254:1-9.
[12] JAVADIAN P,SHEPPARD D,BUCKLEY C,et al.Hydrogen desorption properties of bulk and nanoconfined LiBH4-NaAlH4[J].Crystals,2016,6(6):70.
[13] VAJO J J,SKEITH S L,MERTENS F.Reversible storage of hydrogen in destabilized LiBH4[J].The journal of physical chemistry B,2005,109(9):3719-3722.
[14] AU M,JURGENSEN A,ZEIGLER K.Modified lithium borohydrides for reversible hydrogen storage[J].The journal of physical chemistry B,2006,110(51):26482-26487.
[15] FANG Z Z,WANG P,RUFFORD T E,et al.Kinetic- and thermodynamic-based improvements of lithium borohydride incorporated into activated carbon[J].Acta materialia,2008,56(20):6257-6263.
[16] SUN T,LIU J,JIA Y,et al.Confined LiBH4:Enabling fast hydrogen release at~100 ℃[J].International journal of hydrogen energy,2012,37(24):18920-18926.
[17] CHEN P,XIONG Z,LUO J,et al.Interaction of hydrogen with metal nitrides and imides[J].Nature,2002,420(6913):302-304.
[18] XIONG Z,HU J,WU G,et al.Thermodynamic and kinetic investigations of the hydrogen storage in the Li-Mg-N-H system[J].Journal of alloys and compounds,2005,398(1-2):235-239.
[19] WANG J,LIU T,WU G,et al.Potassium-modified Mg(NH2)2/2LiH system for hydrogen storage[J].Angewandte chemie international edition,2009,48(32):5828-5832.
[20] WU H,ZHOU W,UDOVIC T J,et al.Structures and crystal chemistry of Li2BNH6 and Li4BN3H10[J].Chemistry of materials,2008,20(4):1245-1247.
[21] FEAVER A,SEPEHRI S,SHAMBERGER P,et al.Coherent carbon cryogel?Ammonia borane nanocomposites for H2 storage[J].The journal of physical chemistry B,2007,111(26):7469-7472.
[22] DENNEY M C,PONS V,HEBDEN T J,et al.Efficient catalysis of ammonia borane dehydrogenation[J].Journal of the American chemical society,2006,128(37):12048-12049.