Petroleum Refinery Engineering ›› 2023, Vol. 53 ›› Issue (11): 47-51.
• PROCESS EQUIPMENT AND MACHINERY • Previous Articles Next Articles
Yao Shuo, Lu Junwen, Zhan Lining, Zhou Lulu, Chen Min, Tian Ye
Received:
Online:
Published:
姚硕, 卢俊文, 湛立宁, 周璐璐, 陈敏, 田烨
通讯作者:
Abstract:
During the regular inspection of a 0.2 MM TPY lubricating oil hydrogenation unit in a petrochemical company, it was found that there was severe corrosion on the tube pass of the high-pressure hydrogenation heat exchanger, mainly concentrated in the lower temperature area of the lower half of the heat exchange tube. According to the analysis of corrosion products, it was mainly underdeposit corrosion caused by ammonium chloride crystallization. The analysis of the operation status of the unit showed that the main factors affecting the crystallization of ammonium chloride included the chlorine content in the feedstock, the water injection effect of the heat exchanger and the operating temperature of the heat exchanger. In the anti-corrosion upgrade and renovation of the heat exchanger, the use of specialized dechlorinating agents effectively reduced the chlorine content of the feedstock, increased the outlet temperature of the tube pass, reduced the possibility of ammonium chloride crystallization, improved the water injection flushing effect, reduced the concentration of ammonium chloride and its residence time on the heat exchange surface. The material upgrade and renovation improved the corrosion resistance of the heat exchange surface metal. During the three-year operation period after the upgrade and renovation, there was no ammonium salt crystallization on the tube pass of the heat exchanger, which prevented the underdeposit corrosion caused by ammonium salt and ensured the long-term operation of the lubricating oil hydrogenation unit.
Key words: lubricating oil hydrogenation, high pressure heat exchanger, ammonium salt crystallization, corrosion under scale, chlorine content
摘要:
某石化公司0.2 Mt/a润滑油加氢装置定期检查中,发现加氢高压换热器管程存在严重腐蚀现象,主要集中在换热管下半部温度较低区域,经腐蚀产物分析,主要是NH4Cl结晶垢下腐蚀。对装置运行状况分析表明,影响NH4Cl结晶因素主要有原料油中氯含量、换热器注水效果、换热器操作温度等。在换热器防腐升级改造中,采用专用脱氯剂,有效降低了原料油的氯含量,提高管程出口温度降低了NH4Cl结晶的可能性,改善注水冲洗效果降低了NH4Cl浓度及在换热面停留时间,材质升级改造提高了换热面金属抗腐蚀能力。升级改造后的3 a运行期间,换热器管程侧未出现铵盐结晶,防止了铵盐垢下腐蚀的发生,保证了润滑油加氢装置的正常运行。
关键词: 润滑油加氢, 高压换热器, 铵盐结晶, 垢下腐蚀, 氯含量
Yao Shuo, Lu Junwen, Zhan Lining, Zhou Lulu, Chen Min, Tian Ye . Corrosion analysis and protection of high pressure heat exchanger for lubricating oil hydrogenation[J]. Petroleum Refinery Engineering, 2023, 53(11): 47-51.
姚硕, 卢俊文, 湛立宁, 周璐璐, 陈敏, 田烨 . 润滑油加氢高压换热器腐蚀分析与防护[J]. 炼油技术与工程, 2023, 53(11): 47-51.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal01.magtechjournal.com/lyjsygc/EN/
https://journal01.magtechjournal.com/lyjsygc/EN/Y2023/V53/I11/47
[1] 薛皓,于凤昌.加氢装置高压换热器氯化铵沉积原因分析及对策[J].炼油技术与工程,2021,51(7):29-33.
[2] 段永锋,于凤昌,陈崇刚.加氢装置高压换热器腐蚀问题分析及措施[J].石油炼制与化工,2016,47(7):92-95.
[3] 陈盛秒.热高分气/混合氢换热器腐蚀分析与选材研究[J].石油化工设备技术,2020,41(4):48-53.
[4] 田烨,卢俊文,湛立宁,等.常顶换热器铵盐垢下腐蚀案例分析及改进效果[J].安全、健康和环境,2023,23(4):23-27.
[5] 熊卫国,李方杰,王小平,等.柴油加氢精制装置热高分气/混合氢换热器腐蚀分析[J].石油化工腐蚀与防护,2018,35(3):61-64.
[6] American Petoleum Institute.Design,materials,fabrication,operation and inspection guidelines for corrosion contral in hydroprocessing reactor effluent air cooler(REAC)systems:API 932B—2019[S].Washington D C:API Publishing Services,2019:31.
[7] 韦勇.加氢裂化高压换热器的腐蚀泄漏及对策[J].石油化工腐蚀与防护,2021,38(1):14-17.
[8] 任日菊,周斌,程伟,等.加氢装置高压换热器失效分析及铵盐腐蚀结晶温度的变化规律研究[J].石油炼制与化工,2021,52(1):118-125.
[9] 薛皓,于凤昌.加氢装置高压换热器氯化铵沉积原因分析及对策[J].炼油技术与工程,2021,51(7):29-33.
[10] 卢俊文,董久明.夹套式焦炉上升管换热器的传热性能研究[J].压力容器,2020,37(6):34-38.
[11] 刘承.加氢装置循环氢系统腐蚀及防护现状研究[J].安全、健康和环境,2018,18(12):12-17.