Petroleum Refinery Engineering ›› 2023, Vol. 53 ›› Issue (2): 1-5.
• PROCESSING • Next Articles
Di Kaiying Liu Bin
Received:
Online:
Published:
狄凯莹, 刘彬
通讯作者:
作者简介:
Abstract:
The flue gas desulfurization system of catalytic cracking unit is prone to fouling and blockage, equipment corrosion and other problems during operation, which affects the long-term operation of the flue gas desulfurization system. Through analysis, it is known that the main reason for scaling and blocking of the flue gas desulfurization system is that the average calcium hardness of the fresh water used in the absorption tower is 175 mg/L, which is much higher than the recommended value for system operation(65 mg/L). After being absorbed, SOx in the flue gas reacts with Ca2+ in the fresh water to generate CaSO4 precipitation. At the same time, the paper also analyzes the H2SO4 dew point corrosion of the absorption tower caused by SOx encountering water, the erosion of catalyst particles, and the pitting corrosion of the system caused by Cl- in the liquid. By selecting the external drainage of the unit with low content of Ca and Cl to replace the fresh water, optimizing the operation and strictly controlling the total hardness of tower bottom slurry to be no more than 100 mg/L, total dissolved salts(TDS) to be no more than 106 mg/L, total suspended solids(TSS) to be no more than 2,500 mg/L, mass concentration of chloride ions to be no more than 750 mg/L, system pH value of 6.5~7.0, etc., the equipment failure problems and maintenance frequency have decreased significantly, and the pipeline replacement cycle has increased from three months to more than one year. The scaling and corrosion problems of the system have been effectively controlled to ensure the long-term operation of the system.
Key words: catalytic cracking unit, flue gas desulfurization, fouling, blockage, corrosion, quality of make-up water, pH value, particulate matter;
摘要:
催化裂化装置烟气脱硫系统在运行过程中易出现结垢堵塞、设备腐蚀等问题,影响烟气脱硫系统的长周期运行。通过分析得知导致烟气脱硫系统结垢堵塞的主要原因:吸收塔所用新鲜水的平均钙硬度为175 mg/L,远大于系统运行建议值(65 mg/L),烟气中的SOx被吸收后与新鲜水中的Ca2+反应生成CaSO4沉淀。同时,还分析了SOx遇水对吸收塔的H2SO4露点腐蚀、催化剂颗粒物的冲蚀、液体所含Cl-对系统造成的点蚀等问题。通过选择Ca, Cl含量低的装置外排水替代新鲜水,优化操作,严格控制塔底浆液总硬度不大于100 mg/L、总溶解盐(TDS)不大于106 mg/L、总悬浮物(TSS)不大于2 500 mg/L、氯离子质量浓度不大于750 mg/L、系统pH值在6.5~7.0等措施,设备故障问题与检修频次明显下降,管道更换周期由3个月升至1 a以上。系统结垢与腐蚀问题得到有效控制,保证了系统的长周期运行。
关键词: 催化裂化装置, 烟气脱硫, 结垢, 堵塞, 腐蚀, 补水水质, pH值, 颗粒物
Di Kaiying, Liu Bin . Analysis on operation problems of flue gas desulfurization system in catalytic cracking unit[J]. Petroleum Refinery Engineering, 2023, 53(2): 1-5.
狄凯莹, 刘彬 . 催化裂化装置烟气脱硫运行问题分析[J]. 炼油技术与工程, 2023, 53(2): 1-5.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal01.magtechjournal.com/lyjsygc/EN/
https://journal01.magtechjournal.com/lyjsygc/EN/Y2023/V53/I2/1
[1] 苏荣祥,陈胜涛.催化烟气脱硫单元工艺技术对比与操作浅析[J].安徽化工,2021,47(1):106.
[2] 王秀菲,张林平.催化裂化烟气脱硫装置运行分析及建议[J].化学工业与工程技术,2014,35(2):24.
[3] 李林,叶晓明,韩淑利.烟气脱硫技术在催化裂化装置上的应用[J].齐鲁石油化工,2015,43(4):272.
[4] 金松,宋阳,李晓光,等.重油催化裂化装置烟气脱硝脱硫系统运行探讨[J].炼油技术与工程,2019,49(3):32.
[5] 陈文通.湿法烟气脱硫吸收塔结垢分析与防治[J].山东化工,2021,50(13):251.
[6] 王迪勇,闫家亮,曾波,等.硫磺回收装置烟气脱硫系统结垢分析与对策[J].炼油技术与工程,2019,49(7):9.
[7] 陈文武,黄贤滨,屈定荣,等.烟气脱硫塔结垢原因分析及对策[J].安全、健康和环境,2016,16(11):15.
[8] 柴永新,韩磊,潘隆,等.催化裂化装置烟气除尘脱硫综合塔腐蚀原因分析[J].安全、健康和环境,2021,21(12):17.
[9] 许兰飞,刘希武,崔新安.催化裂化烟气湿法脱硫装置的腐蚀问题及防护对策[J].腐蚀与防护,2021,42(1):76.
[10] 吕伟.催化裂化烟气湿法脱硫装置设备腐蚀现状分析及对策[J].石油化工腐蚀与防护,2018,35(1):25.
[11] 鄢行龙.湿法烟气脱硫系统结垢腐蚀问题分析[J].中国环保产业,2011(10):60.