Petroleum Refinery Engineering ›› 2023, Vol. 53 ›› Issue (3): 54-57.
• PROCESS EQUIPMENT AND MACHINERY • Previous Articles Next Articles
Feng Xing, Wang Shengchao, Hao Mingsheng
Received:
Online:
Published:
冯兴, 王胜潮, 郝明生
作者简介:
Abstract:
Combined with the basic theory of fluidization and the operation of the unit, the problems of unstable fluidization of the regeneration inclined pipe of the 2.2 MM TPY DCC unit of CNOOC Ningbo Daxie Petrochemical Co., Ltd., which resulted in large fluctuation of reaction temperature and large vibration of the inclined pipe, were analyzed. It was believed that the main reasons for the instability of fluidization in inclined pipe were the excessive gas carried at the inlet of the inclined pipe and the unreasonable setting of the loosening point of the inclined pipe. The catalyst exhibits bubbling bed fluidization inside the inclined pipe. By modifying the degassing tank, improving the reservoir volume of the regenerator bed, reducing the nitrogen volume of the degassing tank, optimizing the setting of the loosening point, controlling the fine powder content in the equilibrated catalyst, the degassing effect of the degassing tank was improved, the catalyst carrying gas volume in the inclined pipe was decreased, and the fluidization of the regeneration inclined pipe was significantly improved. The maximum fluctuation amplitude of the reaction temperature is reduced from ±5 ℃ to ±2 ℃, and the amplitude of the regeneration inclined pipe is reduced from 5~6 mm to 1~2 mm, providing basic guarantees for the efficient long cycle operation of the unit.
Key words: DCC unit, regeneration inclined pipe, catalyst flow, degassing tank, regenerator bed, equilibrium catalyst powder
摘要:
结合流化基本理论和装置运行情况,对中海石油宁波大榭石化有限公司2.2 Mt/a催化裂解(DCC)装置再生斜管流化不稳定,导致反应温度波动大、斜管振动大的问题进行了分析,认为斜管流化不稳定的主要原因是斜管入口携带气体量过多和斜管松动点设置不合理导致催化剂在斜管内呈现鼓泡床流化。通过对脱气罐进行改造、提高再生器床层藏量、降低脱气罐氮气量、优化斜管松动点布置、控制平衡催化剂中细粉含量等措施,提高了脱气罐脱气效果,降低了斜管催化剂携带气量,再生斜管流化得到了明显改善,反应温度最大波动幅度由±5℃降至±2℃,再生斜管振幅由5~6 mm降至1~2 mm,为装置高效长周期运行提供了基本保障。
关键词: DCC装置, 再生斜管, 催化剂流动, 脱气罐, 再生器床层, 平衡催化剂细粉
Feng Xing, Wang Shengchao, Hao Mingsheng . Analysis of the causes of instability of the regeneration inclined pipe fluidization in the DCC unit[J]. Petroleum Refinery Engineering, 2023, 53(3): 54-57.
冯兴, 王胜潮, 郝明生 . DCC装置再生斜管流化不稳定原因分析[J]. 炼油技术与工程, 2023, 53(3): 54-57.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal01.magtechjournal.com/lyjsygc/EN/
https://journal01.magtechjournal.com/lyjsygc/EN/Y2023/V53/I3/54
[1] 李玉飞,王明东,侯玉宝,等.R2R型催化裂化装置流化问题探究[J].炼油技术与工程,2019,49(12):31-32.
[2] 王志军,尤克伟.催化裂化装置MIP技术改造后反应温度波动原因分析及改进[J].石油炼制与工程,2008,39(8):11-13.
[3] 郑从武.蜡油催化裂化装置流化问题探讨[J].炼油技术与工程,2005,35(3):25-27.
[4] 许友好,李宁,华仲炯.催化裂化工艺技术手册[M].北京:中国石化出版社,2018:116-118.
[5] 门亚男,董群,王焱鹏,等.脱除再生催化剂携带烟气的研究进展[J].云南化工,2006,33(3):70-73.
[6] 严超宇,王迪,贾梦达,等.催化裂化装置立管输送催化剂异常原因分析[J].石油学报(石油加工),2018,34(1):94-100.
[7] 张锋,何涛,于立勇,等.催化裂化装置输送斜管内催化剂流化状态分析[J].石油炼制与化工,2020,51(9):60-64.
[8] 彭威,刘艳升,黄炳庆,等.FCC装置再生立管输送催化剂的影响因素[J].石油学报(石油加工),2021,37(1):113-120.
[9] 曹汉昌,郝希仁,张韩.催化裂化工艺计算与技术分析[M].北京:石油工业出版社,2000:226-230.
[10] 邢颖春,卢春喜.某催化裂化装置催化剂循环管线松动点的改造[J].石化技术与应用,2008,28(1):49-54.