Petroleum Refinery Engineering ›› 2023, Vol. 53 ›› Issue (5): 33-37.
• PROCESSING • Previous Articles Next Articles
Fan Siqiang, Wang Zhongyi, Sun Shike, Cao Zhengkai, Cui Zhe, Xian Ce
Received:
Online:
Published:
范思强, 王仲义, 孙士可, 曹正凯, 崔哲, 羡策
作者简介:
基金资助:
Abstract:
Study on two-stage hydrocracking process and supporting catalyst for maximum production of heavy naphtha from straight run diesel is carried out. The results show that under different conversion depths, catalyst B has the highest yield of heavy naphtha, followed by catalyst A, and catalyst C has the lowest yield. When flexible hydrocracking catalyst B with suitable activity is selected for both the first stage and the second hydrocracking, the selectivity of heavy naphtha is the best. When the first stage conversion depth is 60% and the second stage conversion depth is 50%, the yield of heavy naphtha reaches 73.15%, and the aromatic potential content is 49%, which can be used as high-quality feedstocks for catalytic reforming unit. By optimizing the process, some diesel feedstocks are introduced into the secondary reactor to further improve the selectivity of heavy naphtha. After optimization, the yield of heavy naphtha has increased from 73.15% to 73.34%, while the yield of liquid products has increased from 92.20% to 92.25%.
Key words: straight-run diesel, heavy naphtha, two-stage hydrocracking, catalyst, selectivity, conversion depth, yield, process optimization
摘要:
开展了以直馏柴油为原料最大量生产重石脑油的两段加氢裂化工艺及配套催化剂的研究。结果表明:在不同转化深度下,采用催化剂B时重石脑油收率最高,催化剂A次之,催化剂C最低。一段加氢裂化催化剂与二段加氢裂化催化剂均选择活性适宜的灵活型加氢裂化催化剂B时重石脑油选择性最佳,一段转化深度60%、二段转化深度50%的工艺条件下,重石脑油收率达到73.15%,同时芳烃潜含量为49%,可作为优质的催化重整装置原料。通过工艺优化在二段反应器引入部分柴油原料,进一步提升重石脑油选择性,优化后重石脑油收率由73.15%提升至73.34%,同时液体产品收率由92.20%提高至92.25%。
关键词: 直馏柴油, 重石脑油, 两段加氢裂化, 催化剂, 选择性, 转化深度, 收率, 工艺优化
Fan Siqiang, Wang Zhongyi, Sun Shike, Cao Zhengkai, Cui Zhe, Xian Ce . Study on two-stage hydrocracking technology for maximum production of heavy naphtha from straight-run diesel[J]. Petroleum Refinery Engineering, 2023, 53(5): 33-37.
范思强, 王仲义, 孙士可, 曹正凯, 崔哲, 羡策. 直馏柴油最大量生产重石脑油两段加氢裂化技术研究[J]. 炼油技术与工程, 2023, 53(5): 33-37.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal01.magtechjournal.com/lyjsygc/EN/
https://journal01.magtechjournal.com/lyjsygc/EN/Y2023/V53/I5/33
[1] 李立权,陈崇刚.加氢装置大型化进展[J].炼油技术与工程,2019,49(3):1-9.
[2] 田晨,许浩,张绍岩,等.最大化生产中间馏分油加氢裂化技术的工业应用[J].广东化工,2022,49(9):25-28.
[3] 倪吉.“油转化”趋势下,炼化行业如何发展[J].中国石油和化工,2021(6):30-32.
[4] 张飞,呼晓昌,李斌.加氢裂化装置生产5号工业白油的探索[J].石油炼制与化工,2020,51(9):40-44.
[5] 高杭,秦波,柳伟,等.新一代轻油型加氢裂化催化剂的研制[J].炼油技术与工程,2022,52(3):43-46,64.
[6] 郝文月,刘昶,曹均丰,等.加氢裂化催化剂研发新进展[J].当代石油石化,2018,26(7):29-34.
[7] 梁宇,王甫村,王紫东,等.调整炼油厂产品结构的柴油加氢裂化技术的开发与应用[J].现代化工,2021,41(12):218-221,225.
[8] 武宝平,莫昌艺,黎臣麟,等.多产重石脑油和喷气燃料加氢裂化技术的工业应用[J].石油炼制与化工,2020,51(12):12-16.
[9] 李志敏.柴油加氢裂化装置最大量生产重石脑油和喷气燃料改造总结[J].炼油技术与工程,2021,51(4):6-9.
[10] 刘亭亭,刘旭明,鞠林青.化工型炼油厂总体工艺方案研究[J].石化技术与应用,2019,37(5):318-321.
[11] 范思强,王仲义,曹正凯,等.直馏蜡油掺炼劣质原料全循环加氢裂化工艺研究[J].石油与天然气化工,2021,50(5):17-22.
[12] WANG N,LI J,YANG X,et al.The composite of the molecular sieve and ordered mesoporous carbon used for desulfurization of straight run diesel[J].Acta petrol sinica(petroleum processing section),2017,33(6):1089-1096.
[13] KOCHAPHUM C,GHEEWALA S H,VINITNANTHARAT S.Environmental comparison of straight run diesel and cracked diesel[J].Journal of cleaner production,2012,37:142-146.
[14] 宋国良,肖寒,张景成,等.Y和Beta分子筛对环烷基直馏柴油加氢裂化性能的影响[J].石油炼制与化工,2021,52(1):72-78.
[15] 范思强,王仲义,崔哲,等.加氢裂化工艺条件对直馏柴油高附加值的影响[J].石油化工,2019,48(12):1265-1269.