Petroleum Refinery Engineering ›› 2023, Vol. 53 ›› Issue (8): 14-19.
• PROCESSING • Previous Articles Next Articles
Zhang Ruiqiao
Received:
Online:
Published:
张瑞桥
作者简介:
Abstract:
A study on hydrogenation reaction and distillation cutting based on molecular lump is conducted to reduce hydrogen consumption of LCO processing in a refinery. Modeling the actual working conditions on site data using Aspen HYSYS software, characterizing the LCO feedstock using molecular lump, and analyzing the concentration effect of LCO after distillation cutting on different molecules based on molecular lump, and evaluating the changes in hydrogen consumption, product properties, and downstream comprehensive utilization after molecular concentration by modeling the hydrogenation reaction, in order to quantitatively calculate the product properties and overall benefits after light and heavy LCO refining. Combined with the site conditions, distillation cutting 76.5 t/h LCO at 290~310 ℃, where the light LCO is sent to the hydrofining unit and the heavy LCO is sent to the hydroupgrading unit, which can improve the selectivity of LCO hydrogenation process and effectively avoid the over saturation and ring opening of monocyclic aromatic hydrocarbons and cycloalkane. Through modeling analysis and optimization calculation, the pure hydrogen consumption in the LCO hydrogenation process is reduced by 2,380 m3/h, which is equivalent to a 9.9% reduction in hydrogen consumption of the entire factory's LCO processing. Combined with distillation cutting energy consumption and other costs, the annual comprehensive benefit of the plan is 15.74 million yuan.
Key words: molecular lump, LCO, feedstock characterization, hydrofining, hydroupgrading, reaction model, distillation cutting, benefit evaluation
摘要:
针对某炼油厂催化裂化柴油(催柴)加工氢耗高的问题,基于分子集总进行加氢反应及精馏切割的研究。通过Aspen HYSYS软件对现场实际工况进行建模,利用分子集总进行催柴的原料表征,基于分子集总分析催柴精馏切割后对不同分子的提浓作用,并通过加氢反应建模评价分子提浓后氢耗、产品性质及下游综合利用的变化,从而定量计算轻、重催柴分炼后的产品性质及整体效益。结合现场工况,将76.5 t/h的催柴以290~310℃为切割点进行精馏切割,其中轻催柴送至加氢精制装置,重催柴送至加氢改质装置,从而可提高催化柴油加氢过程的选择性,有效避免单环芳烃、环烷烃分子过度饱和、开环。通过建模分析及优化计算,催柴加氢过程纯氢耗量降低2 380 m3/h,折合全厂催柴加工氢耗降低9.9%。结合轻重切割能耗等成本,方案综合效益约为1 574万元/a。
关键词: 分子集总, 催化裂化柴油, 原料表征, 加氢精制, 加氢改质, 反应模型, 轻重切割, 效益评价
Zhang Ruiqiao . Optimization of LCO distillation cutting based on molecular lump[J]. Petroleum Refinery Engineering, 2023, 53(8): 14-19.
张瑞桥 . 基于分子集总的催化裂化柴油轻重切割优化研究[J]. 炼油技术与工程, 2023, 53(8): 14-19.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal01.magtechjournal.com/lyjsygc/EN/
https://journal01.magtechjournal.com/lyjsygc/EN/Y2023/V53/I8/14
[1] 张龙,方向晨,张英,等.炼油厂氢气系统与轻烃回收系统的集成优化[J].石油与天然气化工,2015,44(6):43-49.
[2] 柏介军,贺平林,仇国贤.“双碳”目标下,炼化行业“油转化”之路怎么走?[J].中国石油和化工,2022(9):42-43.
[3] 周卫锋.炼化企业氢气系统优化[J].中外能源,2018,23(3):84-91.
[4] 周鑫,赵辉,杨朝合.催化柴油加氢-催化裂解组合工艺的模拟优化[J].化学工程,2018,46(11):1-5.
[5] 仲从伟,刘纪昌,王睿通,等.基于结构导向集总的柴油加氢精制分子水平反应动力学模型 Ⅰ.模型的建立与验证[J].石油化工,2019,48(7):653-660.
[6] 汪成,仲从伟,杨雪梅,等.基于结构导向集总的柴油加氢精制分子水平反应动力学模型 Ⅱ.反应规律分析与优化[J].石油化工,2019,48(8):763-768.
[7] SRINIVAS B K,PANT K K,GUPTA S K,et al.A molecular lump based model for simulation of industrial naphtha hydro treators[J].Fuel process technol,2017,166:146-163.
[8] 谭明松,张英,王阳峰,等.基于分子集总的氢阱装置的模拟与优化[J].石油化工,2022,51(4):432-439.
[9] 刘孝川,徐长磊,苏灿.焦化汽油和柴油加氢装置掺炼催化裂化柴油工业试验[J].石油炼制与化工,2022,53(7):30-35.
[10] 李宇,乔海燕,石薇薇,等.页岩油加氢精制工艺氢耗的研究[J].石化技术与应用,2017,35(1):23-27.
[11] 徐先荣,毛安国.催化裂化柴油轻重馏分的裂化性能研究[J].炼油技术与工程,2007,37(6):1-5.