Petroleum Refinery Engineering ›› 2024, Vol. 54 ›› Issue (9): 26-29.
• PROCESSING • Previous Articles Next Articles
Han Kunpeng, Liu Tiebin, Weng Yanbo, Yuan Shenghu, Geng Xinguo
Online:
Published:
韩坤鹏,刘铁斌,翁延博,袁胜华,耿新国
作者简介:
基金资助:
Abstract: To produce low sulfur residue marine fuel oil, the influences of reaction conditions such as space velocity, hydrogen partial pressure, reaction temperature and other reaction conditions on the hydrodesulfurization and carbon residue hydroconversion of typical high-sulfur residue feedstock were studied in a pilot plant of residue hydrotreating unit, and the optimization experiment of reaction conditions was carried out. The results show that under the same catalyst system, space velocity, hydrogen partial pressure and reaction temperature are the key factors affecting the selective hydrodesulfurization of residue, while the influence of the hydrogen-to-oil ratio is relatively small. Considering both the hydrodesulfurization performance and stability of the hydrogenation catalyst system, a higher and suitable space velocity (from 0.20 h^-1 to 0.24 h^-1), an appropriate hydrogen partial pressure (from 13 MPa to 15 MPa) and a reaction temperature not exceeding 380℃ are more beneficial to the selective hydrodesulfurization of residue. Based on the above results, by comprehensively adjusting and matching different reaction parameters, when the mass fraction of sulfur in the hydrotreated product is below 0.50%, the carbon residue is increased by 11.3 percentage points and the carbon residue reduction rate is reduced by 5.1 percentage points. The adjustment and optimization of reaction conditions are more important for the selective hydrodesulfurization process of residue.
Key words: font-family:-apple-system, blinkmacsystemfont, ", font-size:14px, background-color:#FFFFFF, ">low sulfur residue type, marine fuel oil, fixed-bed residue hydrotreating technology, volume space velocity, hydrogen partial pressure, reaction temperature, hydrogen-to-oil ratio, removal rate of carbon residue
摘要: 为生产低硫残渣型船用燃料油,采用典型高硫渣油原料在中型渣油加氢装置上开展了反应条件(体积空速、氢分压、反应温度及氢油比等)对渣油加氢脱硫及残炭加氢转化过程影响规律的研究,并进行了反应条件优化试验。结果表明:在相同催化剂体系下,体积空速、氢分压和反应温度是影响渣油选择性加氢脱硫的关键因素,而氢油比的影响较小;在兼顾加氢催化剂体系的加氢脱硫性能和稳定性的前题下,较高且适宜的体积空速(0.20~0.24 h^-1)、适合的氢分压(13~15 MPa)以及不高于380℃的反应温度更有利于渣油选择性加氢脱硫。基于以上结果,通过综合调整匹配不同反应参数,在满足加氢产品硫质量分数低于0.50%的情况下,残炭提升了11.3个百分点、降残炭率降低了5.1百分点。
关键词: font-family:-apple-system, blinkmacsystemfont, ", font-size:14px, background-color:#FFFFFF, ">低硫残渣型, 船用燃料油, 固定床渣油加氢技术, 体积空速, 氢分压, 反应温度, 氢油比, 降残炭率
Han Kunpeng, Liu Tiebin, Weng Yanbo, Yuan Shenghu, Geng Xinguo. Study on hydrotreating reaction conditions for processing low sulfur residue marine fuel oil[J]. Petroleum Refinery Engineering, 2024, 54(9): 26-29.
韩坤鹏, 刘铁斌, 翁延博, 袁胜华, 耿新国. 生产低硫残渣型船用燃料的加氢反应条件研究[J]. 炼油技术与工程, 2024, 54(9): 26-29.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal01.magtechjournal.com/lyjsygc/EN/
https://journal01.magtechjournal.com/lyjsygc/EN/Y2024/V54/I9/26
[1] 马锐,宋永一,张庆军,等.船用残渣型燃料油脱硫技术进展[J].石油化工高等学校学报,2021, 34(1): 15-21.
[2] 廖友贵,薛金召,肖雪洋,等.固定床渣油加氢处理技术应用现状及进展[J].石油化工,2018, 47(9): 1020-1030.
[3] 生青青,韩坤鹏,时一鸣,等.适应炼油厂转型发展的沸腾-固定复合床渣油加氢技术开发[J].炼油技术与工程,2024, 54(6): 9-12.
[4] 赵志飞,齐建勋,方东.减黏工艺生产低硫重质船用燃料油研究[J].石油炼制与化工,2022, 53(8): 26-30.
[5] 王金兰.低硫重质船用燃料油生产方案研究[J].炼油技术与工程,2021, 51(2): 10-13.
[6] 刘淑琴,耿敬远,张会成,等.渣油在加氢处理中的硫分布和硫类型变化[J].当代化工,2011, 40(5): 460-462.
[7] 张会成,颜涌捷,孙万付,等.渣油加氢处理过程中硫的分布与脱除规律研究[J].燃料化学学报,2007, 35(5): 628-631.
[8] 崔瑞利,赵愉生,于双林,等.渣油加氢脱残炭催化剂的失活研究[J].石油化工,2013, 42(4): 411-414.
[9] 崔瑞利,赵愉生,薛鹏,等.固定床渣油加氢处理装置催化剂积炭分析与表征[J].石油炼制与化工,2012, 43(1): 45-48.
[10] 李大东.加氢处理工艺与工程[M].北京:中国石化出版社,2004 657-658.
[11] 陈威,许军,徐金山,等.环烷酸锰催化水热裂解脱除渣油中的噻吩硫[J].石油化工,2020, 49(8): 729-734.
[12] 刘美,刘铁斌,袁胜华,等.中东常压渣油加氢处理过程中含硫化合物的分子转化规律[J].石油学报(石油加工),2016 32(2): 319-325.