Petroleum Refinery Engineering ›› 2023, Vol. 53 ›› Issue (9): 46-50.
• CATALYST AND ASSISTANT • Previous Articles Next Articles
Duan Hongchang, Wang Tianyun, Zhao Mingzhi, Peng Guofeng, Xiang Gangwei, Li Xin
Received:
Online:
Published:
段宏昌, 王天昀, 赵鸣芝, 彭国峰, 向刚伟, 李鑫
作者简介:
基金资助:
Abstract:
The mechanism of phosphorus improving the attrition strength of the catalyst is studied by XRD and FT-IR. The results show that the P—O—Al stable structure is formed by the interaction of phosphorus with the Al—O bond of Kaolin in the catalyst, effectively improving the attrition strength of the catalyst. The fluid catalytic cracking catalyst is modified with(NH4)3PO4 as modifier by the method of equal volume impregnation to improve the attrition strength of the catalyst which drops from 4.2% to 1.0% and meets the application requirement. The performance evaluation results of ACE catalyst show that coke of phosphorus modified catalyst decreases by 0.72 percentage points and gasoline yield increases by 0.91 percentage points.
Key words: phosphorus element, FCC, catalyst, wear index, mechanism, kaolin, performance evaluation
摘要:
利用X射线粉末衍射仪(XRD)、傅里叶红外光谱仪(FT-IR)对磷元素改善催化剂抗磨损性能的机理进行了探究。结果表明:磷元素主要通过与催化剂中高岭土的Al—O键发生相互作用,形成P—O—Al稳定结构,有效提高了催化剂的抗磨损性能;以(NH4)3PO4为改性剂,随着磷元素用量的增加,采取等体积浸渍法对流化催化裂化催化剂进行改性处理,提高了催化剂的抗磨损性能,磨损指数由4.2%降至1.0%,达到了应用指标要求。催化剂性能评价结果表明:磷改性催化剂焦炭收率降低0.72百分点,汽油收率增加0.91百分点。
关键词: 磷元素, 催化裂化, 催化剂, 磨损指数, 机理, 高岭土, 性能评价
Duan Hongchang, Wang Tianyun, Zhao Mingzhi, Peng Guofeng, Xiang Gangwei, Li Xin . Study on phosphorus improving the attrition strength of FCC catalyst[J]. Petroleum Refinery Engineering, 2023, 53(9): 46-50.
段宏昌, 王天昀, 赵鸣芝, 彭国峰, 向刚伟, 李鑫 . 磷元素改善催化裂化催化剂磨损指数研究[J]. 炼油技术与工程, 2023, 53(9): 46-50.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: https://journal01.magtechjournal.com/lyjsygc/EN/
https://journal01.magtechjournal.com/lyjsygc/EN/Y2023/V53/I9/46
[1] WU D F,WU F H,GU Z D.Catalyst attrition in an ASTM fluidized bed[J].Catalysis today,2016,264:70-74.
[2] CHOURASIA S,ALAPPAT B J.Effects of various parameters on the attrition of bed material in a recirculating fluidized bed with a draft tube[J].Particuology,2018,38:61-70.
[3] 李瑞彤,唐健,刘一博,等.新型FCC催化剂直管磨损指数测定仪的开发[J].石油化工自动化,2022,58(2):76-80.
[4] 吴俊升,李晓刚,公铭扬,等.催化裂化催化剂机械强度与磨损行为[J].北京科技大学学报,2010,32 (1):73-77.
[5] 何涛,何立柱,郑云锋,等.催化裂化装置油浆固体质量浓度升高原因分析及对策[J].石化技术与应用,2022,40 (2):126-131.
[6] SANG Y,LI H S.Effect of phosphorus and mesopore modification on the HZSM-5 zeolites for n-decane cracking[J].Journal of solid state chemistry,2019,271:326-333.
[7] AL-RAWAJFEH A E,ALSHAMAILEH E M,ALRBAIHAT M R.Clean and efficient synthesis using mechanochemistry:preparation of kaolinite-KH2PO4 and kaolinite-(NH4)2HPO4 complexes as slow released fertilizer[J].Journal of industrial and engineering chemistry,2019,73:336-343.
[8] LIU Q F,SPEARS D A,LIU Q P.MAS NMR study of surface modifiedcalcined kaolin[J].Applied clay science,2001(19):89-94.
[9] ARAUJO F R,BAPTISTA J G,MARCAL L,et al .Versatile heterogeneous dipicolinate complexes grafted into kaolinite:catalytic oxidation of hydrocarbons and degradation of dyes[J].Catalysis today,2014,227:105-115.
[10] LIU S X,XUE C,YANG H,et al.Intercalated hybrid of kaolinite with KH2PO4 showing high ionic conductivity(~10-4 S cm-1) at room temperature[J].Solid state sciences,2017,74:95-100.
[11] 郑淑琴,常小平,高雄厚,等.高岭土原位晶化体系中焙烧微球特性研究[J].非金属矿,2002(6):5-7.
[12] ZHANG Y,LIU D,LOU B,et al.Hydroisomerization of n-decane over micro/mesoporous Pt-containing bifunctional catalysts:effects of the MCM-41 incorporation with Y zeolite [J].Fuel,2018,226:204-212.
[13] 王天昀,段宏昌,杨一青,等.磷改性对催化裂化催化剂抗磨损性能的影响[J].石化技术与应用,2020,38 (5):300-303.
[14] EBRAHIMI A A,GHAZVINI S F.Experimental attrition study of FCC catalysts through 2D/3D contour plots and response surface models[J].Powder technology,2018,336:80-84.
[15] 唐莉,孙雪芹,刘丛华,等.磷改性对γ-Al2O3酸性和催化活性的影响[J].应用化工,2012,41(10):1785-1787.