[1] 侯雨璇,王红秋,鲜楠莹. 世界丙烯生产技术进展与经济性分析[J]. 现代化工,2020, 40(10): 60-65.
[2] WOO Y, PARK J M, BAE J W, et al. Kinetic modeling of the steam reforming of light hydrocarbon mixture from waste resources effects of gas composition on hydrogen production[J]. International Journal of Hydrogen Energy, 2023, 48(41): 15383-15391.
[3] 汪琦,丁伟俊. 制氢原料变化对转化炉炉管温度的影响及对策[J]. 石油炼制与化工,2009, 40(8): 14-19.
[4] 张兴,袁飞. 轻烃蒸汽转化制氢 HYSYS 软件全流程模拟[J]. 当代化工,2017, 46(3): 546-549.
[5] 李林,蹇守华,申莉,等. 天然气水蒸汽重整制氢的 PROII 模拟分析[J]. 低碳化学与化工,2024, 49(2): 124-128.
[6] 刘铉东,苗小帅,张颖超,等. 制氢原料对轻烃蒸汽重整制氢过程的影响[J]. 石油炼制与化工,2023, 54(9): 98-104.
[7] RAJESH J K, GUPTA S K, RANGAIAH G P, et al. Multi-objective optimization of industrial hydrogen plants[J]. Chemical Engineering Science, 2001, 56(3): 999-1010.
[8] LUTZ A E, BRADSHAW R W, KELLER J O, et al. Thermodynamic analysis of hydrogen production by steam reforming[J]. International Journal of Hydrogen Energy, 2003, 28(2): 159-167.
[9] KWON H, KOO B. Integrated hydrogen production strategy based on multi-objective optimization considering carbon dioxide emission reduction goals[J]. Applied Thermal Engineering, 2024, 34(26): 121717.
[10] ZHU P F, WU Z, GUO L L, et al. Achieving high-efficiency conversion and poly-generation of cooling, heating and power based on biomass-fueled SOFC hybrid system: performance assessment and multi-objective optimization[J]. Energy Conversion and Management, 2021, 240: 114245.
[11] 中石化洛阳工程有限公司. 石油化工设计能耗计算标准:GB/T 50441—2016[S]. 北京:中国计划出版社,2016.
|