[1] 郑宝东. 莲子科学与工程[M]. 北京:科学出版社, 2010. [2] Poornima P, Weng C F, Padma V V. Neferine, an alkaloid from lotus seed embryo, inhibits human lung cancer cell growth by MAPK activation and cell cycle arrest[J]. Biofactors, 2013, 89(3):379-385. [3] 时文芳, 白榕, 吕丽爽,等. 喷雾干燥和冷冻干燥莲子蛋白结构及其功能特性的比较[J]. 食品科学, 2018, 39(9):95-101. [4] Musa A, Birninyauri U A. Proximate composition and mineral analysis of nympheae lotus seeds[J]. African Journal of Food Science and Technology, 2012, 3(7):1-5. [5] Rui C, Hao C, Yi D. Comparison of protein extraction methods and two-dimensional electrophoresis analysis in sacred lotus seeds[J]. Plant Science Journal, 2018, 39(9):95-101. [6] Zeng H Y, Cai L H, Cai X L, et al. Structure characterization of protein fractions from lotus (Nelumbo nucifera) seed[J]. Journal of Molecular Structure, 2011, 1001(3):139-144. [7] Shehu D M, Salihu A, Inuwa H M. Effect of boiling on protein, mineral, dietary fibre and antinutrient compositions of lotus seeds[J]. Journal of Food Composition & Analysis, 2018, 67(4):184-190. [8] Pan A D, Zeng H Y, Feng B. Heat-pretreatment and enzymolysis behavior of the lotus seed protein[J]. Food Chemistry, 2016, 201, 12(5):230-236. [9] Zhang Y, Lu X, Zeng S, et al. Nutritional composition, physiological functions and processing of lotus (Nelumbo nucifera Gaertn.) seeds: A review[J]. Phytochemistry Reviews, 2015, 14(3):321-334. [10] Sun Q, Ma Z F, Kong L M, et al. Structural characteristics and functional properties of walnut glutelin as hydrolyzed: Effect of enzymatic modification[J]. International Journal of Food Properties, 2018, 22(1):265-279. [11] 张维农, 刘大川, 胡小泓. 花生蛋白产品功能特性的研究[J]. 中国油脂, 2002, 27(5):60-65. [12] Kaiqiang W, Shuizhong L, Jing C, et al. Effects of partial hydrolysis and subsequent cross-linking on wheat gluten physicochemical properties and structure[J]. Food Chemistry, 2016, 197(15):168-174. [13] Yin S W, Tang C H, Yang X Q, et al. Conformational Study of Red Kidney Bean (Phaseolus vulgaris L.) Protein Isolate (KPI) by Tryptophan Fluorescence and Differential Scanning Calorimetry[J]. Journal of Agricultural & Food Chemistry, 2011, 59(1):241-248. [15] Han Y L, Gao J, Yin Y Y, et a1. Extraction optimization by response surface methodology of mucilage polysaccharide from the peel of Opunaa dillenii haw, fruits and their physicoehemical properties[J]. Carbohyd Polym, 2016, 151:381-391. [16] Emerald F M E, PushpMass H A, Kumar B, et a1. Physicochemical, thermal, pasting and microstmcmral characterization of commercial Curcuma angustifolia starch[J]. Food Hydrocolloid, 2016:27-36. [17] Zhang J, Ying D, Wei Y, et al. Thermal transition and decomposition properties of pH-and phosphate-mduced defatted soybean meals[J]. Journal of Thermal Analysis & Calorimetry, 2017, 128(2):699-706. [18] Latza V, Guerette P A, Ding D, et al. Multi-scale thermal stability of a hard thermoplastic protein-based material[J]. Nature Communications, 2015, 6(6):83-93. [19] 王中江, 江连洲, 魏冬旭,等. pH值对大豆分离蛋白构象及表面疏水性的影响[J]. 食品科学, 2012, 33(11):47-51. [20] Zheng Y M, Li Z Y, Zhang C, et al. Effects of microwave-vacuum pre-treatment with different power levels on the structural and emulsifying properties of lotus seed protein isolates[J]. Food Chemistry, 2019, 5(1):311-332. [21] Chen Y, Tu Z, Wang H, et al. Glycation of β-lactoglobulin under dynamic high pressure microfluidization treatment: Effects on IgE-binding capacity and conformation[J]. Food Research International, 2016, 89:882-888. [22] Guan X, Yao H, Chen Z, et al. Some functional properties of oat bran protein concentrate modified by trypsin[J]. Food Chemistry, 2007, 101(1):163-170. [23] Wang H, Jun G, Guo X, et al. Functional modification of single-walled carbon nanotubes by soy protein isolate and its properties[J]. Chemical New Materials, 2019, 560(5):145-149. [24] Wu Y, Li S, Song J, et al. Acetylated distarch phosphate/chitosan films reinforced with sodium laurate-modified nano-TiO2: Effects of sodium laurate concentration[J]. Journal of Food Science, 2018, 83(2):655-663. [25] Yong S K, Bolan N, Lombi E, et al. Synthesis and characterization of thiolated chitosan beads for removal of Cu(II) and Cd(II) from wastewater[J]. Water Air & Soil Pollution, 2013, 224(12):1-12. [26] 张金闯. 高水分挤压过程中花生蛋白构象变化及品质调控[D]. 2019. 北京:中国农业科学院, 2019:45. [27] 张羽. 莲子中蛋白质的分离及其食品功能特性研究[D]. 南京:南京师范大学, 2008. [28] 李向红, 刘永乐, 俞健,等. 莲子磨皮粉中蛋白质的提取、组成及性质[J]. 食品科学, 2015, 11(8):129-133. [29] 仇超颖. 脱酰胺小麦醇溶蛋白结构、界面性质及其乳浊液稳定性的研究[D]. 广州:华南理工大学, 2014. [30] 蔡联辉, 曾虹燕, 王亚举,等. 莲子蛋白质的氨基酸组成及其营养评价[J]. 营养学报, 2010, 12(5):503-506. [31] 张亚婷. 大豆蛋白酶解/糖基化接枝复合改性制备微胶囊壁材的研究[D]. 无锡:江南大学, 2015. [32] Liu Y, Zhao G L, Zhao M M, et al. Improvement of functional properties of peanut protein isolate by conjugation with dextran through Maillard reaction[J]. Food Chemistry. 2012, 131(3):901-906. [33] Zhang J, Ying D, Wei Y, et al. Thermal transition and decomposition properties of pH-and phosphate-mduced defatted soybean meals[J]. Journal of Thermal Analysis & Calorimetry, 2017, 128(2):699-706. [34] 魏晓博. 芝麻饼粕制备植物蛋白胶黏剂的研究[D]. 郑州:河南工业大学, 2018:34. [35] 王丽. 木瓜籽油的提取及其籽粕多糖结构和应用特性研究[D]. 郑州:郑州大学, 2017:67. [36] Das S N, Routray M, Nayak P L. Spectral, thermal, and mechanical properties of furfural and formaldehyde cross-linked soy protein concentrate: a comparative study[J]. Polymer-Plastics Technology and Engineering, 2008, 47(6):576-582.